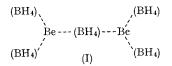
Triple Hydrides of Aluminium and Beryllium

By H. Nöth* and M. Ehemann

(Institut für Anorganische Chemie der Universität, Marburg/Lahn, Germany)


THE term "triple hydride" coined by Wiberg is used to describe complexes or co-ordination compounds consisting of three different hydrides. These compounds have been discovered by Wiberg and his co-workers.¹ Recently, the existence of triple hydrides of the type Li[AlH_{4-n}(BH₄)_n], prepared in ether or tetrahydrofuran solutions from LiAlH₄ and B₂H₆, has been questioned by Ashby and Foster.² They presented convincing evidence that these compounds, if they exist, decompose readily to LiBH₄ and AlH_{3-n}(BH₄)_n solvates. We can confirm these findings although there are observations from electrical conductivity studies in ether pointing to an equilibrium (1) supporting, in part, results by Wiberg *et al.*¹

$$MBH_4 + Al(BH_4)_3 \rightleftharpoons M[Al(BH_4)_4]$$
(1)

This equilibrium can be shifted to the side of the "boranato-metallates" ("tetrahydridoboratometallates") if bulky cations M and nonsolvating solvents are used. Thus $Al(BH_4)_3,OEt_2$ readily adds to $[(C_8H_{17})_3NC_3H_7]BH_4$,³ m.p. 65°, in the presence of benzene. The product $[(C_8H_{17})_3NC_3H_7]$ - $[Al(BH_4)_4]$ separates as a heavy, highly viscous oil, crystallizing extremely slowly, from which not all of the solvent could be removed at reduced pressure, and from which neither H_2 , B_2H_6 , nor $Al(BH_4)_3$ or $Al(BH_4)_3,OEt_2$ could be pumped off at $60^{\circ}/10^{-3}$ mm. The ratio N:Al:B:H⁻ was determined as $0.98:1\cdot0:3\cdot9:16\cdot0$ and the ¹¹B

n.m.r. spectrum in benzene solution showed the equivalence of all the four BH_4^- groups and hydrogen atoms, the 1:4:6:4:1-quintet being centred at $\delta + 33 \cdot 1 \text{ p.p.m.}$ (external BF₃,OEt₂) with J_{BH} 79 c./sec. The bands in the i.r. spectra could be assigned to both terminal (2469, 2404 cm.⁻¹) and Al-H-B-bridging (2151 cm.⁻¹) hydrogen atoms. Similar products with a lower content in BH₄ groups, e.g., [AlH(BH₄)₃]-, were obtained by passing diborane into a solution of $[(C_8H_{17})_3NC_3H_7]AlH_4^4$ in benzene-light petroleum, although 9.94 mmoles of diborane were consumed by 4.9 mmole of the tetrahydridoaluminate at 25° without formation of H_2 or $Al(BH_4)_3$, indicating again the formation of $[(C_8H_{17})_3NC_3H_7][Al(BH_4)_4]$ as confirmed by n.m.r. and i.r. spectra.

Similarly Be(BH₄)₂ adds to $[(C_8H_{17})_3NC_3H_7]BH_4$. According to the stoicheiometry of the reaction, two complexes are formed: $[(C_8H_{17})_3NC_3H_7]$ - $[Be(BH_4)_3]$ (A) and $[(C_8H_{17})_3NC_3H_7]$ [Be₂(BH₄)₅] (B); these are stable at least up to 50° in vacuo against the release of Be(BH₄)₂. Again the ¹¹B n.m.r. spectra in benzene solution showed the equivalence of all the BH₄ groups, (A): $\delta + 34.7$ p.p.m., J_{BH} 80 c./sec.; (B): $\delta + 35.1$ p.p.m., J_{BH} 83 c./sec. Bridging and nonbridging hydrogens are clearly discernible in the i.r. spectra, (A): 2440, 2400, 2238, 2162 cm.⁻¹; (B): 2440, 2395, 2240, 2180 cm.⁻¹. We therefore tentatively suggest structure (I) with formally three-co-ordinated beryllium atoms for the $Be_2(BH_4)_5$ anion, the BH_4 group being a supposed pseudohalide.

 $[(C_8H_{17})_3NC_3H_7]BH_4$ readily adds diborane in benzene solution; from this reaction crystalline [(C₈H₁₇)₃NC₃H₇]B₂H₇, m.p. 42°, was isolated. No fine structure was observed in the ¹¹B spectra at 35° which showed only a rather broad peak

centred at +22.9 p.p.m., and no indication of the $[(C_8H_{17})_3NC_3H_7]BH_4$ resonance at +36.9 p.p.m., $J_{\rm BH}$ 83 c./sec. In the i.r. spectrum only bands due to the B₂H₇- anion (2392, 2275, 2200, 2057, 1032 cm.^{-1}) were detected whilst those of the BH_4^- ion (2260, 2135, 1071 cm.⁻¹) were absent. This ammonium heptahydridodiborate reacted with $Al(BH_4)_3$ or $Be(BH_4)_2$ analogously to the products already described with the evolution of one equiv. of BH_3 . This demonstrates that $Al(BH_4)_3$ and $Be(BH_4)_2$ are stronger Lewis acids than BH_3 in respect to the base BH_4^- .

(Received, May 12th, 1967; Com. 459.)

¹ E. Wiberg, A. Jahn, W. U. Neumeier, and G. N. Schrauzer, unpublished; see A. Jahn, dissertation, University of Munich, 1954; W. U. Neumeier, dissertation, University of Munich, 1958; G. N. Schrauzer, dissertation, University of Munich, 1956; also cited in H. Nöth, Angew. Chem., 1961, 73, 371. ² E. C. Ashby and W. E. Foster, J. Amer. Chem. Soc., 1966, 88, 3248.

³ Prepared by the procedure similar to that described by M. D. Banus, R. W. Bragdon, and T. R. P. Gibb, jun., J. Amer. Chem. Soc., 1952, 74, 2346. ⁴ R. Ehrlich, A. R. Young, jun., and D. D. Perry, Inorg. Chem., 1965, 4, 758.